The stiff Neumann problem: Asymptotic specialty and “kissing” domains
نویسندگان
چکیده
We study the stiff spectral Neumann problem for Laplace operator in a smooth bounded domain Ω ⊂ R d which is divided into two subdomains: an annulus 1 and core 0 . The density stiffness constants are of order ε − 2 m , while they Here ∈ fixed > small. provide asymptotics eigenvalues corresponding eigenfunctions as → any m. In dimension case when touches exterior boundary ∂ gets cusps at point O included consideration. possibility to apply same asymptotic procedure “smooth” based on structure vicinity irregular part. full series x solutions mixed value cuspidal given.
منابع مشابه
Asymptotic distributions of Neumann problem for Sturm-Liouville equation
In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.
متن کاملThe Neumann Problem on Lipschitz Domains
Au — 0 in D; u = ƒ on bD9 where ƒ and its gradient on 3D belong to L(do). For C domains, these estimates were obtained by A. P. Calderón et al. [1]. For dimension 2, see (d) below. In [4] and [5] we found an elementary integral formula (7) and used it to prove a theorem of Dahlberg (Theorem 1) on Lipschitz domains. Unknown to us, this formula had already been discovered long ago by Payne and We...
متن کاملasymptotic distributions of neumann problem for sturm-liouville equation
in this paper we apply the homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of sturm-liouville type on $[0,pi]$ with neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued sign-indefinite number of $c^{1}[0,pi]$ and $lambda$ is a real parameter.
متن کامل∂̄b-NEUMANN PROBLEM ON NONCHARACTERISTIC DOMAINS
We study the ∂̄b-Neumann problem for domains Ω contained in a strictly pseudoconvex manifold M2n+1 whose boundaries are noncharacteristic and have defining functions depending solely on the real and imaginary parts of a single CR function w. When the Kohn Laplacian is a priori known to have closed range in L2, we prove sharp regularity and estimates for solutions. We establish a condition on the...
متن کاملGlobal C∞ Irregularity of the ∂̄–neumann Problem for Worm Domains
where ρ is a defining function for Ω, = ∂̄∂̄∗ + ∂̄∗∂̄, u, f are (0, 1) forms, and denotes the interior product of forms. Under the stated hypotheses on Ω, this problem is uniquely solvable for every f ∈ L(Ω). The Neumann operator N , mapping f to the solution u, is continuous on L(Ω). The Bergman projection B is the orthogonal projection of L(Ω) onto the closed subspace of L holomorphic functions o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Asymptotic Analysis
سال: 2022
ISSN: ['0921-7134', '1875-8576']
DOI: https://doi.org/10.3233/asy-211701